Atomic Force Microscopy Studies of DNA Release in Gene Delivery Dynamics

نویسندگان

  • Yi Zou
  • Lei Wan
  • Guangzhao Mao
چکیده

This chapter reviews recent advances in the understanding of DNA release dynamics from polymeric gene delivery systems. Atomic force microscopy (AFM) has recently been applied to monitor DNA release from bioreducible polyplex nanoparticles and layer-by-layer (LbL) thin films in real time. DNA release dynamics is central to the understanding and control of gene delivery from gene delivery nano-systems. Polycations containing bioreducible disulfide bonds form interpolyelectrolyte complexes with DNA in nanoparticles and thin films. During disassembly, DNA is released in nearphysiologic conditions due to the reducing nature of the polycations. AFM is used to visualize plasmid DNA in various decondensed states from reducible polyplexes and LbL films. The studies highlight nanostructures including toroids and bundles as dominant intermediate DNA structures during DNA release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA release dynamics from reducible polyplexes by atomic force microscopy.

Controlled intracellular disassembly of polyelectrolyte complexes of polycations and DNA (polyplexes) is a crucial step for the success of nonviral gene delivery. Motivated by our previous observation of different gene delivery performances among multiblock reducible copolypeptide vectors ( Manickam, D. S. ; Oupicky, D. Bioconjugate Chem. 2006, 17, 1395- 1403 ), atomic force microscopy is used ...

متن کامل

Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems

Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...

متن کامل

Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems

Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...

متن کامل

DNA release dynamics from bioreducible layer-by-layer films.

DNA release dynamics from layer-by-layer (LbL) films is an important aspect to consider with regards to localized gene delivery systems. The rate of DNA release and the condensation state of DNA during release are of particular interest in the field of gene delivery. A hyperbranched poly(amido amine) (RHB) containing bioreducible disulfide bonds is used to form interpolyelectrolyte complexes wi...

متن کامل

Mathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle

To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011